是要走出自己的道路才行。
观察了一会儿,曹阳兴奋地问到,“极紫外光要怎么才能观察到呢?”
“只能通过仪器。”
唐教授笑着解释说,“一般人的眼睛可以感知的电磁波的频率在380~750THz,波长在780~400nm之间,但还有一些人能够感知到频率大约在340~790THz,波长大约在880~380nm之间的电磁波。
而极紫外光的波长在121纳米到10纳米之间,所以我们平常用肉眼肯定是看不见的。”
“而且,最好不要直视它,这会对眼睛造成不可逆的伤害。”
……
“曹总,你来看。”
唐教授把曹阳请到自己的电脑面前,让自己的学生操作了一下仪器设备。
很快在电脑屏幕当中出现了一组新绘制的图谱。
“波长为1,064nm的水平偏振激光脉冲,这种极光脉冲半峰全宽大概是10ns,能量约50mJ,被发射到周期为0.125m总长4m的平面波荡器中,在这里与计量光源MLS存储环中存储的电子束共同传播。
在传播过程中,由于波荡器间隙满足共振条件,激光-电子能量交换能够最大程度进行,使得电子束产生正弦能量调制图案。
在周长为48m的准同步存储环中旋转一圈后,电子向同步相聚集,最终形成微束。来自电子束的波荡器辐射之后通过二向色镜分离为基波和二次谐波,信号则主要集中在二次谐波上。
在光电探测器前插入一个窄带通滤波器,即可拾取到由微束产生的窄带相干辐射。”
很好。
到后面曹阳已经听不懂他在说些什么了。
不愧是专业搞这个。
曹阳其实只关心一个问题,那就是——
“我们能做出这个极紫外光源稳定吗?它能够用来进行光刻制造芯片吗?”
“理论上是可行的。”唐教授点点头,“不过我们现在还处于基础的起步阶段,只是将光源通过实验的形式制造出来,可相应的成本还是比较高的,想要将成本降低下来,可能还需要有一段时间。”
“您预期需要多久?”曹阳问到。
“嗯……短的话3、5年,长的话8、9年,但是肯定能把成本压下来,而且我们会完善相应的设备,制造出更稳定而且功效更高的极紫外光源。”
从理论上来说,现在唐教授采用的这种微态光聚
本章未完,请点击下一页继续阅读!