首先就要确定极限的情景.也就是模型,然后才能计算出这个模型的极限值。
“徐顾问,我有个想法。”
接着很快,一直没怎么发言的蔡少辉举起了手:
“咱们构建一个弹性散射模型怎么样?就像是两个乒乓球对撞一样。”
“然后以此制作一个球形爆轰驱动装置,形成我们需要的向心爆轰,推动4cm厚的中子反射层向铀-235燃料球3迅速压缩。”
“当反射层与核燃料之间紧密结合时,所有的平面波瞬间通过反弹形成球形波,从而一举引发链式反应。”
不过徐云闻言却很快摇了摇头,否定了蔡少辉的想法:
“不太合适,少辉同志,弹性模型虽然在理论上看似合适.但你似乎忘记了平方可积这一点。”
“一旦引入平方可积.弹性模型就会失去意义了。”
蔡少辉顿时一怔。
不过很快,他的愣神便换成了另一股明悟的表情。
是哦
众所周知。
以一维为例。
平面波组成的波包在画出来以后,就相当于一个高斯分布的函数,这说明全空间概率不一样,最后积分是会收敛的。
换一个角度理解。
平面波组成的波包,实际上就是某个函数进行的傅里叶变换。
而傅里叶变换的条件之一就是这个函数绝对可积,所以波包肯定也是平方可积的。
而核武器爆炸显然不可能是无限延伸的平面波模型,必然要考虑到位形的局域性。
如此一来,弹性模型自然就从根源上被否定了。
实际上。
在原本的历史中,英国佬就在这方面栽过跟头。
不过他们翻车的不是原子弹,而是更高一级的氢弹。
当时奥尔德玛斯顿在讨论绿花岗岩的次级设计时为了节省运输能力,省去复杂的内爆计算便采用过弹性模型,最终翻了波车,亏损了大概两个亿的英镑。
要知道,这可是60年代的两个亿
后来若非海对面提供了支援,约翰牛估摸着还得摔几跤。
当然了。
关于这方面的概念徐云了解的也就仅此而已了,再往后他就只能以看戏为主了。
于是他很自然的将目光转移到了一旁的挂.咳咳,大于身上:
“大于同志,你有什么看唔?大于同志?”
令徐云有些奇
本章未完,请点击下一页继续阅读!