花掉所有思维卡都不可能触及的高度。
至少....徐云得和老爱见过一次面,才有可能讨论那事儿。
当然了。
没结果归没结果,徐云倒也不至于一点收获都没有。
譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。
因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。
所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。
他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。
当然了。
即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。
随后徐云深吸一口气,将注意力放到了面前的算纸上。
只见他拿起笔,很快在纸上写下了那道方程:
4d\/b2=4(√(d1d2))2\/[2d0]2=√(d1d2)\/[d0]=(1-η2)≤1.......
{qjik}K(Z\/t)=∑(jik=S)n(jik=q)(xi)(wj)(rk);(j=0,1,2,3…;i=0,1,2,3…;k=0,1,2,3…)
{qjik}K(Z\/t)=[ xaK(Z±S±N±p),xbK(Z±S±N±p),…,xpK(Z±S±N±p),…}∈{dh}K(Z±S±N±p).......
(1-ηf2)(Z±3)=[{K(Z±3)√d}\/{R}]K(Z±m±N±3)=∑(ji=3)(ηa+ηb+ηc)K(Z±N±3);
(1-η2)(Z±(N=5)±3):(K(Z±3)√120)K\/[(1\/3)K(8+5+3)]K(Z±1)≤1(Z±(N=5)±3);
w(x)=(1-η[xy]2)K(Z±S±N±p)\/t{0,2}K(Z±S±N±p)\/t{w(x0)}K(Z±S±N±p)\/t...........
最后的一个公式...或者说一个数值为:
Le(sx)(Z\/t)=[∑(1\/c(±S±p)-1{nxi-1}]-1=n(1-x(p) p-s)-1。
这是一个标准的正则化组合系数和
本章未完,请点击下一页继续阅读!