空的重中之重。
目前主流的技术,主要是发动机控制燃料和氧化剂混合燃烧后,向外急速喷出高温高速的气体,以此为反作用力,推动航天器加速进入太空。
但夏国不一样,控制了小型聚核变的应用技术后,夏国就相当于拥有了可以媲美太阳的能源。无论是产生的能量还是成本,都远远超过了主流的以液氧煤油、液氧液氢、液氧甲烷等氧化剂和燃料为核心的化学燃料组合。
后羿号火星探测器能实现超越当今时代的超高航速,关键就在于小型聚变技术在发动机上的应用。
为了给庞大的宇宙飞船提供更充沛的动力,聚变反应堆就要从“小型化”转化为“中型化集群”,并要尽可能地将能源转换功率提升至85%以上。
以此为动力的发动机更是面对重重困难,攻克高效、稳定、长寿命推力室技术,大功率、高效涡轮泵技术,以及发动力的集群技术,这些技术又涉及到材料学、动力学、热能学、电力学等诸多学科,目标是使发动机在长时间的高功率运作下,依然有较高的寿命裕度。
按正常的科技速度,想达到上述目标,起码要三五十年的研究时间。
不过夏国有两大优势,足以将这个时间缩短到五年内——这也是“向火星进发五年计划”中“五年”时间的由来。
第一个优势是由宁宗训和纪秀玉担任副总工程师,这对院士夫妻俩根据神秘预言设计草图,长期带着庞大的科研团队研究“诺亚方舟”式的空中堡垒,对于超大动力发动机技术的持久运转、集群化供能的研究极为深入,而且已能直接投入实践。
第二个优势自然有秦克在。
秦克作为世界最顶尖的全子学科精通的神级物理学家,又拥有SS级黑科技知识《一种适用于进行大规模移民的超高速宇宙飞船设计图全系列》,可以说是对超高速宇宙飞船的所有建造细节了然于胸,当中就包括全新型的次世代动力系统“X108AII”。
这种被命名为“X108AII”次世代的动力系统无论性能功率还是架构的精巧度,都远远超越当今世界航天器主流的“霍尔推进器”系列,只是夏国在精密制造方面还是逊色于西方,尤其是在材料学方面,还有相当的差距,使得秦克无法直接将“X108AII”制造出来,只能退而求其次,设计出了弱化版的“X108A”动力系统。
别小看这弱化版,采用八个了中型低温聚变反应堆的“X108A”动力系统在各方面依然傲视世界,起码领先于
本章未完,请点击下一页继续阅读!